1. Belyayev L.A., 2020. Cross from the Novodevichy Convent: archaeological context and typology of reliquary crosses of the 16th–17th centuries. RA [Russian archaeology], 4, pp. ???. (In Russ.)
2. Bio-Rad. IR Spectral Databases (Electronic resourсe). URL: https://www.bio-rad.com/ru-ru/product/ir-spectral-databases?ID=N0ZXNZE8Z.
3. Bonaduce I., Ribechini E., Modugno F., Colombini M.P., 2017. Analytical approaches based on gas chromatography mass spectrometry (GC/MS) to study organic materials in artworks and archaeological objects. Analytical Chemistry for Cultural Heritage. Cham: Springer, pp. 291–327.
4. Broda J., Przybyło S., Kobiela-Mendrek K., Binia D., Rom M., Grzybowska-Pietras J., Laszczak R., 2016. Biodegradation of sheep wool geotextiles. International Biodeterioration & Biodegradation, 115, pp. 31–38.
5. Cardamone J.M., 2010. Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). Journal of molecular structure, vol. 969, no. 1–3, pp. 97–105.
6. Chen H.L., Jakes K.A., Foreman D.W., 1996. SEM, EDS, and FTIR examination of archaeological mineralized plant fibers. Textile research journal, vol. 66, no. 4, pp. 219–224.
7. Chernova O.F., Tselikova T.N., 2004. Atlas volos mlekopitayushchikh. Tonkaya struktura ostevykh volos i igl v skaniruyushchem elektronnom mikroskope [Hair atlas of mammals. Fine structure of overhair and spines in scanning electron microscope]. Moscow: Tov-vo nauch. izd. KMK. 430 p.
8. Derrick M.R., Stulik D.C., 1999. Infrared Spectroscopy in conservation science. Scientific tools for conservation. Los Angeles: Getty Conservation Instit. 235 p.
9. Deschler-Erb E., Lehmann E.H., Perinet L., Vontobel P., Hartmann S., 2004. The complementary use of neutrons and x-rays for the non-destructive investigation of archaeological objects from Swiss collections. Archaeometry, vol. 46, no. 4, pp. 647–661.
10. Eniosova N.V., 2016. The chemical composition of non-ferrous metal from Gnezdovo. Istoricheskiy zhurnal: nauchnyye issledovaniya [History Journal: Researches], 6, pp. 724–733. (In Russ.)
11. Evershed R.P., Heron, C., Goad, L.J., 1990. Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst, vol. 115, no. 10, pp. 1339–1342.
12. Friedman E.S., Brody A.J., Young M.L., Almer J.D., Segre C.U., Mini S.M., 2008. Synchrotron radiation-based x-ray analysis of bronze artifacts from an Iron Age site in the Judean Hills. Journal of Archaeological Science, vol. 35, no. 7, pp. 1951–1960.
13. Golikov V.P., Lantratova O.B., Sinitsyna N.P., 2005. Chemical and technological research of materials from the burials of the Ascension Monastery necropolis in the Moscow Kremlin. Issledovaniya v konservatsii kul’turnogo naslediya: materialy konf. [Studies in the preservation of cultural heritage: Conference proceedings], 1. Moscow: Indrik, pp. 51–63. (In Russ.)
14. Govor L.I., Cherepantsev Yu.K., Akhmed M.R., al’-Nadzhar S., al’-Amili M.A., al’-Assafi N., Rammo N., 1978. Atlas spektrov gamma-izlucheniya ot neuprugogo rasseyaniya bystrykh neytronov reaktora [Atlas of gamma radiation spectra from inelastic scattering of fast neutrons in a reactor]. Moscow: Atomizdat. 328 p.
15. Govor L.I., Greshnikov E.A., Zaytseva I.E., Kovalenko E.S., Kurkin A.V., Murashov M.M., Podurets K.M., Somenkov V.A., Glazkov V.P., Blagov A.E., Yatsishina E.B., 2017. Studies of two-part medieval Russian reliquary crosses by nuclear physics methods. KSIA [Brief Communications of the Institute of Archaeology], iss. 249, part II, pp. 348–365. (In Russ.)
16. Hilling O.R., 1976. Neutron Radiographic Enhancement Using Doping Materials and Neutron Radiography Applied to Museum Art Objects. Practical Applications of Neutron Radiography and Gaging. H. Berger, ed. West Conshohocken: Amer. Soc. for Testing and Materials Intern., pp. 268–276.
17. Ingo G.M., Angelini E., De Caro T., Bultrini G., Mezzi A., 2004. Combined use of XPS and SEM+EDS for the study of surface microchemical structure of archaeological bronze Roman mirrors. Surface and Interface Analysis, vol. 36, no. 8, pp. 871–875.
18. Kolobylina N.N., Greshnikov E.A., Vasil’yev A.L., Tereshchenko E.Yu., Zaytseva I.E., Makarov N.A., Kashkarov P.K., Yatsishina E.B., Koval’chuk M.V., 2017. Electron microscopy study of an Old Russian niello decorated reliquary cross of the 12th century. Kristallografiya [Crystallography], vol. 62, no. 4, pp. 543–550. (In Russ.)
19. Kolobylina N.N., Greshnikov E.A., Vasiliev A.L., Tereschenko E.Yu., Zaytseva I.E., Makarov N.A., Kashkarov P.K., Yatsishina E.B., Kovalchuk M.V., 2017. Electron microscopy study of an Old Russian (XII century) encolpion cross with black inlay. Crystallography Report, vol. 62, no. 4, pp. 529–536.
20. Kovalenko E.S., Podurets K.M., Greshnikov E.A., Zaytseva I.E., Agafonov S.S., Kolobylina N.N., Kaloyan A.A., Govor L.I., Kurkin V.A., Yatsishina E.B., 2019. Study of an Old Russian bronze reliquary cross with non-destructive methods. Kristallografiya [Crystallography], vol. 64, no. 5, pp. 826–831. (In Russ.)
21. Lehmann E.H., Deschler-Erb E., Ford A., 2010. Neutron Tomography as a valuable tool for the non-destructive analysis of historical bronze sculptures. Archaeometry, vol. 52, no. 2, pp. 272–285.
22. Low M.D., Baer N.S., 1977. Application of Infrared Fourier Transform Spectroscopy to Problems in Conservation: General Principles. Studies in Conservation, vol. 22, no. 3, pp. 116–128.
23. Makarov N.A., Greshnikov E.A., Zaytseva I.E., Podurets K.M., Kovalenko E.S., Murashov M.M., 2020. Invisible holy relics. Relics and materials inserted in medieval reliquary crosses based on the data from comprehensive analytical studies. KSIA [Brief Communications of the Institute of Archaeology], 258, pp. 25–45. (In Russ.)
24. Mirnezhad S., Safapour S., Sadeghi-Kiakhani M., 2017. Dual-mode adsorption of cochineal natural dye on wool fibers: Kinetic, equilibrium, and thermodynamic studies. Fibers and Polymers, vol. 18, no. 6, pp. 1134–1145.
25. NIST/EPA/NIH Mass Spectral Library (NIST 14) (Electronic resource). URL: http://www.sisweb.com/nist.
26. Ogilvie R.E., 1970. Applications of the solid state x-ray detector to the study of art objects. Application of science in examination of works of art: proceedings of the seminar. Boston: Museum of Fine Arts, pp. 84–87.
27. Oudbashi O., Emami S.M., Ahmadi H., Davami P., 2013. Micro-stratigraphical investigation on corrosion layers in ancient Bronze artefacts by scanning electron microscopy energy dispersive spectrometry and optical microscopy. Heritage Science, vol. 1, no. 1, pp. 1–10.
28. Pozhidayev V.M., Kamayev A.V., Devlet E.G., Greshnikov E.A., Nuretdinova A.R., Sivitskiy M.V., 2016. Gas chromatographic study of the contents remains from a medieval spherical-conical vessel. Zhurnal analiticheskoy khimii [Journal of Analytical Chemistry], vol. 71, no. 11, pp. 1209–1212. (In Russ.)
29. Presnyakova N.N., Vasil’yev A.L., Tereshchenko E.Yu., Yatsishina E.B., 2019. Peculiarities of the use of electron microscopy methods in historical metal studies. Nauchno-tekhnicheskiye vedomosti SPb. gos. politekhn. univ. Fiziko-matematicheskiye nauki [St. Petersburg State Polytechnic University Journal - Physics and mathematics], vol. 12, no. 3, pp. 92–100. (In Russ.)
30. Sajed T., Haji A., Mehrizi M.K., Boroumand M.N., 2018. Modification of wool protein fiber with plasma and dendrimer: Effects on dyeing with cochineal. International journal of biological macromolecules, 107, pp. 642–653.
31. Salvadó N., Butí S., Tobin M.J., Pantos E., Prag A.N., Pradell T., 2005. Advantages of the use of SR-FT-IR microspectroscopy: applications to cultural heritage. Analytical Chemistry, vol. 77, no. 11, pp. 3444–3451.
32. Siano S., Bartoli L., Santisteban J.R., Kockelmann W., Daymond M.R., Miccio M., De Marinis G., 2006. Non-destructive investigation of bronze artefacts from the Marches National Museum of Archaeology using neutron diffraction. Archaeometry, vol. 48, no. 1, pp. 77–96.
33. Svetogorov R.D., Sul’yanov S.N., 2018. High-resolution powder diffraction at the RSA station of the Kurchatov synchrotron radiation source. IX Natsional’naya kristallokhimicheskaya konf., 4–8 iyunya 2018 g.: tez. [IX National crystal chemistry conference, June 4–8, 2018: Abstracts]. Suzdal’, p. 81. (In Russ.)
34. Zhang J., Palmer S., Wang X., 2010. Identification of animal fibers with wavelet texture analysis. WCE 2010: Proceed. of the World Congress on Engineering. Hong Kong: Intern. Assoc. of Engineers, Newswood Ltd, pp. 742–747.
Comments
No posts found